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Wavelet analysis is applied to examine two-dimensional �2D� structures of pure electron plasma density
distribution observed in a free-decaying turbulent stage starting from an unstable distribution. In contrast to the
traditional Fourier analysis, the simultaneous resolution of the structures in terms of the physical coordinates
and length scales �or wave numbers� allows us to discriminate instrumental dot noises without generating
spurious high wave-number components that tend to distort the energy and enstrophy spectra. With this
analysis at each time segment, the following features are clearly observed: Intermittency in the structures of
electron density distribution, that is equivalent to the 2D vorticity distribution, is clearly demonstrated in terms
of the scale-resolved kurtosis. The upward cascade of the enstrophy in the wave-number space is associated
with the development of vortex filamentation in the physical space. Controlled discrimination of the coherent
component in terms of the wavelet coefficients of the observed density distribution indicates significant con-
tribution of persisting coherent vortices in steepening the energy spectra of the 2D turbulence far above the
theoretically predicted power law of k−3.
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I. INTRODUCTION

Macroscopic dynamics of pure electron plasmas trans-
verse to a strong magnetic field B0 are equivalent to two-
dimensional �2D� vortex dynamics of inviscid and incom-
pressible fluids, through the relation �=en /�0B0 between the
vorticity � and the electron density n �1�. Here, −e and �0 are
the electron charge and the dielectric constant in vacuum,
respectively. By taking advantage of this equivalence, funda-
mental processes in 2D turbulence have been examined ex-
tensively by employing magnetized pure electron plasmas
which evolve from unstable initial distributions into a stable
metaequilibrium state via stochastic dynamics of vortex
patches �1–7�.

Extensive analyses of fine structures in the density distri-
bution based on the Fourier expansion have revealed that the
spectral dynamics of the energy and enstrophy in the wave-
number space are qualitatively consistent with the theoretical
description of the 2D turbulence �8–10�, i.e., the energy is
transferred to larger scales and the enstropy cascades toward
smaller scales at a constant transfer rate �7�. However, there
remains uncertainty in understanding how this spectral dy-
namics are connected to the vortex dynamics in the physical
space. This uncertainty is to be attributed to the inherent
nature of the Fourier transform that loses information of the
location of vortex structures.

In order to resolve this difficulty, wavelet analyses have
been employed since the end of the 1980’s for the local
analysis of turbulent flows observed in experimental and nu-
merical studies �11�. Spatially localized wave packets, called
wavelets, allow us to analyze turbulent fields in terms of both
coordinates �physical space� and scale �wave-number space�
simultaneously within the limits of the uncertainty principle.

In this paper, the orthogonal wavelet decomposition is
applied to the experimentally observed density distributions

which were previously investigated in terms of Fourier
analysis �7�. The spectral dynamics in the wave-number
space are examined in relation to the vortex dynamics in the
physical space to clarify characteristic features in 2D turbu-
lence from a physical point of view.

The outline of this paper is as follows: First, we introduce
the analyzing wavelet used in this paper in Sec. II A, and
then in Sec. II C, resorting to the wavelet-based noise extrac-
tion method, we remove instrumental noises from the raw
data of observed density distribution and evaluate the effects
of the noises to the data analyses reported in previous papers.
In Sec. III, on the basis of the denoised data, we investigate
the various properties of the turbulent structures with the
wavelet decomposition introduced in Sec. III A. In Sec.
III B, physical dynamics of the density structure are exam-
ined at each length scale, and in Sec. III C, statistical quan-
tities are evaluated from the wavelet coefficients. In Sec.
III D, we focus our examination onto the contribution of co-
herent vortex structures to the spectra that characterize the
2D turbulent system as a whole. The conclusion is given in
Sec. IV.

II. REDUCTION OF DENOISED DISTRIBUTION

A. Introduction of wavelets

The analyzing wavelets need to be selected in terms of
compact support, symmetry, smoothness, number of vanish-
ing moments, and calculation efficiency �11,12�. In the fol-
lowing analysis, we employ the Coiflet order 12 wavelet
which is compactly supported, quasisymmetric, and has four
vanishing moments �13�. Because the electrons are confined
in the conducting wall in the experiment, the approximation
of periodicity may cause deformations in the energy spectra
in the low wave-number range. Nevertheless, as far as we
have examined the spectra in the range high above the low
wave number, the spectral structures are confirmed to be*kwaiyosuke@h01a0395.mbox.media.kyoto-u.ac.jp
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consistent with previous results that were obtained with Fou-
rier analysis on the experimental geometry �7�.

B. Experimental scheme

The experiment was carried out using a pure electron
plasma confined in a Penning-Malmberg trap consisting of a
uniform magnetic field �B0=0.048 T� and a square-well po-
tential, which is in the same configuration as previously re-
ported �5–7,14,15�. The vortex dynamics start with a sponta-
neous formation of density patches via a nonlinear stage of
the diocotron instability of a ring-shaped density distribution
�4,6,7�. Through successive mergers between the patches, ac-
companied by a generation of filamentary structures, the tur-
bulent state relaxes into a stable density distribution of a
single-peaked profile. Details of the experimental configura-
tion and diagnostic methods have been reported in Ref.
�5–7,14–16�. The time evolution of the 2D density distribu-
tion was observed destructively by extracting all electrons
along the magnetic field lines, accelerating them onto a phos-
phor screen and digitizing the resultant luminosity distribu-
tion with a charge-coupled-device �CCD� camera at each
time step of the relaxation. The observed evolution taken
from one of the data sets is shown in Fig. 1. Each image is
denoised in a different way from the previous paper �7�.

C. Extraction of instrumental noises

The denoising procedure is shown in Fig. 2 by taking one
of the snap shots before denoising as an example. The left
panel represents the raw data of 2D density distribution
n0�x ,y� observed at t=31 �s in Fig. 1. Randomly distributed
dots are visible around the spiraling vortices. The low-level
dots with stochastic distribution are associated with the ran-
domly accumulated charge on the pixels of CCD due to dark
current. If we subtract the height of the dots uniformly from
the raw data, discontinuities appear around the vortices to
cause spuriously components at high wave numbers in Fou-
rier spectra. In this section, we examine the contribution of
the instrumental noise to physical analysis by applying the
wavelet-based noise extraction method to the raw data of
density distribution.

The probability density function �PDF� of n0�x ,y� in the
left panel is plotted in the right panel in Fig. 2 with the solid
curve. The PDF in the region of n�0 fits to a Gaussian

distribution represented by a dashed curve. Since the density
n cannot be negative, this part of P�n� should belong to the
instrumental noise. In order to extract the Gaussian compo-
nent systematically, we apply a denoising procedure to
n0�x ,y� in Fig. 2, which consists of decomposing the 2D
image of n0�x ,y� into a wavelet series and reconstructing the
next-step distribution from the coefficients whose moduli are
larger than the threshold value ��ln N �17,18�. Here, N is the
total pixel number 512�512, and � is the variance of the
noise that represents the Gaussian distribution fitting to the
PDF with n�0. The distribution denoised in this manner is
plotted in the t=31 �s frame of Fig. 1.

Some details of the denoising procedure are given in Fig.
3�a� as 1D profiles along the chord y=0 �indicated by the
arrow in the left panel of Fig. 2�a��. Here, the raw data of the
density distribution �gray line� and the denoised distribution
�solid line� are shown together in the upper part, and the
difference of the two distributions �dashed line� is plotted in
the lower part. The latter represents the noise extracted from
the wavelet series of the raw data. The PDF for each distri-
bution in 2D space is plotted in Fig. 3�b� in the form normal-
ized at n=0. The dashed line representing the PDF of the
noise component is confirmed to be very close to the Gauss-
ian distribution. The PDF of the denoised distribution in the
range n�0 is reduced substantially, indicating that most of
the unphysically negative part of the raw data has been re-
moved.

The energy spectra associated with the separated distribu-
tions are plotted in Fig. 3�c�. The spectrum of the instrumen-
tal noise �dashed line� shows the power-law scaling E�k�
�k−1 in the wave-number domain of k�1000. Since the en-
ergy spectrum is defined as E�k�= 1

2�0
2	kd
�en̂�k� /�0B0�2k−2

�where n̂�k� and 
 are the Fourier transform of the density
distribution and the azimuthal angle of k, respectively�, this
profile means �n̂�k���const, so that the extracted noise is
uniformly distributed over the spectral space as a white �un-
correlated� noise. This also means that the instrumental noise
cannot be removed with simple low-pass Fourier filtering.

In Fig. 3�c�, it is also noticeable that the spectrum of the
noise exceeds that of the denoised distribution in amplitude
at high wave numbers k�7500. This implies that physical
quantities evaluated from the raw data, particularly those
characterizing the fine scale structures, can be substantially
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FIG. 1. Images of the time evolution of the density distribution.
Each image is denoised using the procedure described in Sec. II C.
The time of observation �in �s� is indicated at the upper left corner.
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FIG. 2. An example of the raw data of electron density distri-
bution n0�x ,y� �left� and its probability density function �PDF� P�n�
�right�. The dashed curve is the Gaussian fit to P�n� optimized in
the negative region of the electron density n.
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influenced by the instrumental noise. To evaluate the contri-
bution of the instrumental noise, we calculate the integral
quantities, the enstrophy Z2= 1

2�dr2�en /�0B0�2 and the palin-
strophy 1

2 �e /�0B0�2�dr2��n�2, for the raw denoised and noise
distributions, and plot as a function of time in Fig. 4. The
palinstrophy is a measure of the fineness in the spatial struc-
tures. Throughout the whole process, the gray and closed
squares overlap, indicating that more than 95% of the enstro-
phy of the raw data is retained in the denoised distribution,
while 70–95% of the palinstrophy in the raw data is found to
belong to the instrumental noise.

On the basis of the denoised distribution, we reevaluated
the effective viscosity coefficient �=−�1 /2P�DZ2 /Dt, which
is a measure of the degree of enstrophy dissipation �7–10�.
The time evolution of the experimentally determined viscos-
ity is plotted in Fig. 5, together with the theoretically pre-
dicted coefficient �th. The latter is estimated by introducing
the parameters of the present experiment �the electron den-
sity n�r��1013 m−3, the axial length L�r�	0.08 m and the
temperature 	0.3 eV, etc.� into the proposed formula �19�.
The effective viscosity � has increased by a factor of 4 from
the previously published value �7� as a result of the reduction
of instrumental noises in the palinstrophy, though it still
agrees with �th within a factor of 2. Moreover the two vis-
cosities show quite similar variations over the whole time of
the relaxation, which were not clearly observed in the previ-
ous report. As stated in Ref. �7�, this agreement may suggest

that the stochastic motions of individual particles under fluc-
tuating fields play a important role in the dissipation process
of vortex dynamics, and the discrepancy in the absolute
value may be attributed to the theoretical assumption that
viscous transport proceeds in a cylindrically symmetric con-
figuration under stationary state.

III. WAVELET ANALYSIS OF TURBULENT STRUCTURE

A. Multiresolution analysis of density distribution

In this section, we analyze the structures of the turbulent
electron plasma in terms of both coordinates and scale on the
basis of the wavelet coefficients obtained from the denoised
density distribution n�x ,y�. The distribution is decomposed
into an orthogonal wavelet series from the smallest scale
2−�J−1� �where J=log2

�N=9� to the largest scale 20 using a
two-dimensional multiresolution analysis �11,13,18� given as

n�x,y� = n̄0,0
0 
0,0

0 �x,y� + 

j=0

J−1



ix=0

2j−1



iy=0

2j−1



�=1

3

ñix,iy
�,j �ix,iy

�,j �x,y� ,


ix,iy
j �x,y� = 
ix

j �x�
iy
j �y�, �ix,iy

1,j �x,y� = 
ix
j �x��iy

j �y� ,

�ix,iy
2,j �x,y� = �ix

j �x�
iy
j �y�, �ix,iy

3,j �x,y� = �ix
j �x��iy

j �y� ,

where 
ix
j �x� and �ix

j �x� are the scaling function and the cor-
responding wavelet, respectively. Due to the orthogonality,
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FIG. 3. Extraction of instrumental noises. �a� Density distributions along the chord y=0 in the left panel of Fig. 2 consisting of raw data
�gray lines�, denoised �solid lines�, and extracted noise �dashed lines� distributions �the noise is scaled along the vertical axis to the right�.
�b� PDF of each component in 2D space. �c� Energy spectrum for each distribution.
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FIG. 4. Time evolution of the enstrophy Z2 �squares� and palin-
strophy P �diamonds� evaluated from the 2D density distribution of
raw data n0�x ,y� �gray symbols�, denoised distribution �open sym-
bols�, and noise distribution �closed symbols�.
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FIG. 5. Time evolution of the viscosity coefficients reevaluated
from the denoised data � ��� and calculated from the theoretical
formula �th ���.
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the wavelet coefficient ñix,iy
�,j at scale 2−j and position �ix , iy�

is given by ñix,iy
�,j = �n ,�ix,iy

�,j �=�n�r��ix,iy
�,j �r�dr, and ñ0,0

0

= �n ,
0,0
0 � corresponds to the mean value of the density.

In the actual analyses, the above expansion is applied to
the raw data n0�x ,y� and the denoised distribution n�x ,y� is
subject to further analyses with decreased number of coeffi-
cients. Unless otherwise noted, the results presented in the
following sections are all obtained from the denoised density
distribution observed at t=31 �s.

B. Dynamics of enstrophy distribution

First, we examine the spatial distribution of the density
structure at each length scale in terms of the local enstrophy

spectrum Z̃2�x ,kj� of wave number kj =k02 j at the position
x= �ix , iy�29−j�x as evaluated from the wavelet coefficients
ñix,iy

�,j �12,20,21�

Z̃2�x,kj� =
1

2

 e

�0B0
�2



�=1

3

�ñix,iy
�,j �2/Aj ,

where

Aj = �kj�xj
2,

�xj = 29−j�x ,

�kj = �kj+1kj − �kjkj−1 ,

Here �x=0.1 mm is the smallest resolvable scale on the
CCD image, and k0 is determined by the filtering property of
the Fourier-transformed wavelet and scaling function.
Z̃2�x ,kj� is defined as the density of the enstrophy per unit
area �xj

2 and per unit wave-number range �kj, so that

��ñix,iy

�,j �2 is divided by the factor Aj �20�.
The contour of the enstrophy density Z̃2�x ,kj� in the scale

of j=3–6 at each time step is plotted in Fig. 6 together with
the corresponding electron density distribution to the left.
The vortex patches generated at t=13 �s are dominated by

Z̃2�x ,kj� at j=4, and the coherent property of these struc-
tures, spatial locality or high vorticity, is retained throughout
the merging process between the patches. In contrast, in

smaller scales of j=5–6, Z̃2�x ,kj� extends spatially along
with the generation of filamentary structures. At the end of
the merging process at t=31 �s, while the filaments are most
conspicuous in the scale of j=5–6, a single-peaked distribu-

tion forms accompanied by the sharpening of Z̃2�x ,kj� at j
=3. After the formation of a single vortex, the amplitudes of

Z̃2�x ,kj� at j=4–6 decrease due to the smoothing of the fine-
scale structures, and finally a bell-shaped core distribution
with the characteristic scale of j=3 forms surrounded by a

low-density halo. The distributions of Z̃2�x ,kj� at scales j
=7–8 �not shown in Fig. 6� are masked by remaining noise
component.
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FIG. 6. �Color online� Con-
tours of the local enstrophy spec-

trum Z̃2�x ,kj� for scales j=3–6
corresponding to the density distri-
butions at each time step �left
panels�.
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The wavelet-based enstrophy spectrum in the wave-

number space is obtained by summing Z̃2�x ,kj� over all po-

sitions, as Z̃2�kj�=
ix,iy
Z̃2�x ,kj��xj

2. It is plotted in Fig. 7
with open circles, together with the Fourier-based spectrum

Z2�k� with solid line. As observed in Fig. 7, Z̃2�kj� agrees
quite well with Z2�k�. The scales j=3–6 in the wavelet rep-
resentation correspond to the inertial range in the wave-
number space, where the enstrophy transfer rate remains al-
most constant at a finite value as confirmed in the previous

paper �7�. The agreement between Z̃2�kj� and Z2�k�, if com-
bined with Fig. 6 that describes the spatial dynamics at each
length scale, indicates that the enstrophy cascade proceeds
involving a wide range of length scales extending from vor-
tex patches to fine filamentary structures.

C. Characteristic features of turbulent structures

We proceed with our statistical examination of the space-
time resolved data as given in Fig. 6. Figure 8 shows the
scale-dependent higher-order moments evaluated from the
wavelet coefficients �note that the second-order moment cor-

responds to the wavelet enstrophy spectrum Z̃2�kj��. Here,
the skewness Sj and the kurtosis Kj are evaluated at different
scales from the 2D distributions of the raw n0�x ,y� ���, de-
noised n�x ,y� ���, and the extracted noise ��� distributions.
The pth order moment at scale j is defined as

Mp,j =
1

3 � 22j 

ix,iy=0

2j−1



�=1

3

�ñix,iy
�,j − M̄ j�p,

where M̄ j =
ix,iy,�ñix,iy
�,j / �3�22j� is the mean value at scale j.

The skewness Sj �p=3� and kurtosis Kj �p=4� are evaluated
as �21,22�

Qp,j =
Mp,j

�M2,j�p/2 .

With regard to the noise structure, both the skewness and
kurtosis are observed to be close to the Gaussian value of
Sj 	3 and Kj 	0, except at the scale of j=0–2 where the
number of the coefficients is too small �0 at j=0–1 and 4 at
j=2� to give a statistically meaningful value. At scales j
=7–8 of the raw data n0�x ,y�, both Sj and Kj approach the
Gaussian. This observation is attributed to the overwhelming

fraction shared by the instrumental noises in the high wave-
number domain k�7500 of the raw data, as noticed in Fig.
3�c�. The density distribution n�x ,y� after denoising process
shows clear characteristics that the kurtosis Kj increases in
the whole range of the scale index j, though the skewness
does not shows any systematic trend. The clear trend of the
kurtosis suggests that the structure of the vorticity distribu-
tion ��n�x ,y�� is intermittent in the turbulent state �23�.

On the basis of the above observation, we examine the

time evolution of the statistical quantities, Z̃2�kj�, Sj, and Kj,
separated into different length scales. The details of the
analysis are described in Fig. 9. In the frame of enstrophy to

the left, while Z̃2�kj�’s at j=2–3 decay substantially in asso-

ciation with the vortex merger �13� t�31 �s�, Z̃2�k4� re-

mains almost constant, but Z̃2�kj�’s at j=5–6 show a rapid
increase and reach the maximum at t=31 �s. This temporal
behavior is consistent with the observation in Fig. 6. The
successive change of the enstrophy at each length scale sup-
ports the physical interpretation that the enstrophy cascades
toward smaller scales through the filamentation process of
the vortex structures.

In contrast to the enstrophy, the skewness and kurtosis
show only a slight systematic change during the merger-
dominant period. However, these two quantities show unam-
biguous changes in the generation phase of the vortex
patches around t=13 �s, in which Sj increases from negative
to zero and Kj decreases at the scales of j=3–6. Kj also
decreases at t�31 �s at the scales of j=4–5 along with the
reduction in the enstrophies at j=3–6. The kurtosis at j
=3–5 is observed to converge into almost equal value after
40 �s. This means that intermittency in the structures of den-
sity distribution disappears in association with the dissipation
of the fine-scale fluctuations.

D. Effect of coherent components on turbulent spectrum

In numerical studies of a free-decaying 2D turbulence
�24–26�, it has been observed that a long-time persistence of
high vorticity structures tends to impede the cascade of en-
strophy and causes the slope of the energy spectrum E�k�
�k−� to be steeper than the theoretically predicted value of
�=3 �8–10�. In the experiment, the influence of the coherent
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vortices was also observed in the spectral distributions of the
energy and transfer rate of the enstrophy �7�. In this section,
we examine contributions of the coherent vortices to the tur-
bulent cascade process in terms of the steepening of the en-
ergy spectrum.

Here, we employ the extraction method proposed by Kev-
lahan and Farge �27� to separate the denoised density distri-
bution n�x ,y� into two parts, the coherent component
nC�x ,y� and the filamentary component nF�x ,y�. First, the
wavelet coefficients are squared and arranged in the order of
decreasing amplitude, and its cumulative sum �i.e., cumula-
tive enstrophy� is evaluated. The result is plotted in Fig. 10.
The sum is normalized to the total enstrophy �6
�108 m2 /s2�. It is found that more than 70% of the total
enstrophy is shared by only 5 coefficients.

Due to the orthogonality of the wavelet functions, the
denoised density distribution n�x ,y� can be decomposed into
arbitrary subsets of distributions. If we describe as n�x ,y�
=nC�x ,y�+nF�x ,y� separating the two components at the en-
strophy fraction of 88.2% in the cumulative enstrophy �see
Fig. 10�, distributions of nC�x ,y� and nF�x ,y� are given as in
Fig. 11�a�. The reason for this discrimination is discussed
later. The two panels demonstrate a clear contrast between
the bulk distribution and highly-structured filamentary distri-
bution. The 1D profiles of n�x ,0�, nC�x ,0�, and nF�x ,0�

along the chord y=0 are plotted in Fig. 11�b�. The difference
in the length scale may be observed: the dominant scales
composing nC�x ,y� are j=0–3, and those composing nF�x ,y�
are j=4–8.

In Ref. �27�, the threshold for the separation was deter-
mined at the point where the slope changes in the logarith-
mic plot of cumulative enstrophy. In Fig. 10, however, the
slope changes continuously in the plot, so that the threshold
is not clearly determinable. Therefore we carry out the sepa-
ration with various trial values of threshold ranging from 80
to 100%, and compare the shapes of the spectra for the co-
herent and filamentary components. Comparison is made in
Fig. 12 for the coherent ��� and filamentary ��� components
in terms of the power index � estimated from a linear least-
square fit to log-log plot of the energy spectrum E�k��k−� in
the wave-number region of 700�k�5000.

The slope of the spectrum for the filamentary component
varies continuously from the index �=3.6 representing the

FIG. 9. Time evolution of the enstrophy �left�, skewness �middle�, and kurtosis �right� at each length scale j=0 ���, 1 ���, 2 ���, 3 ���,
4 ���, 5 ���, 6 ���, 7 ���, 8 ���. Origin of the skewness is shifted at each scale for clarity.
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component nF�x ,y�.
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FIG. 11. �a�: 2D profiles of the coherent component nC�x ,y�
�left� and the filamentary component nF�x ,y� �right� separated at the
threshold value of 88.2%. �b� 1D profiles of the denoised density
distribution n�x ,0� �gray line�, nC�x ,0� �solid line�, and nF�x ,0�
�dashed line� along the chord y=0.
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whole spectrum down to the index �=1 characterizing the
white noise �see Fig. 3�c��. In contrast, the spectrum for the
coherent component shows the power-law scaling when the
threshold is set at a value above 88.2%, and the index de-
creases continuously from 5.6 down to 3.6 as the threshold
increases. If the threshold is lowered below 88%, the power
index � increases discontinuously up to 8 and remains
around this value. The corresponding energy spectrum be-
comes increasingly oscillatory due to the reduction of the
number of wavelet constituents. The observed transition in
the energy spectrum of coherent component suggests that the
appropriate threshold should lie around 88.2%. The distribu-
tions plotted in Fig. 11 are based on this discrimination.

Figure 13 shows the energy spectra of the coherent and
filamentary components separated at the threshold value of
88.2% as plotted in Fig. 11. Each energy spectrum shows the
power-law scaling with �=5.5 for nC, and �=3 for nF over a
wide domain in the wave-number space, which is consistent
with the theoretically expected index �8–10�. Because the
present argument for determining the threshold is not clearly
based on definite criteria, there remain some ambiguities
concerning to the extraction of the coherent component. For
all this weakness, the extensive wavelet analysis of the ex-
perimental data clearly shows that the steepness of the en-

ergy spectrum increases with increasing fraction of the co-
herent component in the total structures under examination.
This conclusion based on the experiment is consistent with
the findings based on numerical simulations �26,27�.

In closing this section, we note the theoretical arguments
raised by Saffman �28� and Gillbert �29� with regard to the
power index of the energy spectrum. Saffman assumed that
turbulence is dominated by vorticity discontinuities �i.e., fila-
mentary structures� generated via vortex interactions, and
analytically obtained the spectral index of k−4 for the case
with isotropic and dilute distribution of discontinuities. Later,
on a model with spiral structures surrounding coherent vor-
tex patches, Gillbert argued that the accumulation of the dis-
continuities brings the Saffman’s k−4 spectrum down to k−3

as derived from the cascade model �8–10�. These theoretical
pictures suggest that the reduction of the spectral index rep-
resenting the filamentary part, as shown in Fig. 12, corre-
sponds to the accumulation of the filamentary structures in
the Gillbert’s model in the course of the reduction of coher-
ent components relative to the filamentary components.

IV. CONCLUSION

The objective of this paper is to explore the structural
analyses of two-dimensional turbulence that appears as vor-
tex dynamics, beyond the scope achieved so far in terms of
the Fourier expansion that loses the information on the spa-
tial coordinates of the structure under consideration. The
wavelet analysis is applied to the same data set that was
analyzed extensively in the previous paper �7� with the Fou-
rier analysis, in order to clarify the advantage of holding a
simultaneous resolution in the physical and wave-number
spaces. We also take the advantage of the equivalence of the
density distribution of a magnetized pure electron plasma to
the vorticity distribution in two-dimensional fluid dynamics.

The basic achievement is the successful removal of instru-
mental noises that, in the previous paper, dominated the en-
ergy and enstrophy spectra in the high wave-number region.
The dynamics of the denoised distribution are analyzed at
different levels of length scale so that the vortex dynamics in
the physical space can be related directly to the spectral
transport in the wave-number space. The enstrophy cascade
is shown to proceed through the filamentation process of the
vortices. The scale-resolved wavelet analyses have revealed
the intermittency in the structures of density distribution. The
free-decaying turbulence has been known to be heavily in-
fluenced by persisting coherent vortices that tend to steepen
the shape of the energy spectra. The wavelet expansion of the
denoised data has led us to reasonable extraction of coherent
structures from stochastic fluctuations that belong to filamen-
tary distributions. The stochastic component is confirmed to
have the energy spectrum following the power law E�k�
�k−� with the index of ��3 as expected in the theoretical
model of the two-dimensional turbulence.

These results were not obtained without the wavelet
analysis that preserves local information of spatial structure
at each scale, and demonstrate the usefulness of this analysis
to extract uncultivated aspects of magnetized pure electron
plasmas as an ideal test bench for investigating Euler fluid
dynamics.
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FIG. 12. Power index � of the energy spectrum E�k��k−� in the
wave-number region of 700�k�5000 is plotted for coherent ���
and filamentary ��� components as a function of the threshold
value in the cumulative enstrophy. The vertical dashed line indi-
cates the threshold value of 88.2% and the horizontal dashed line
indicates the power index of the whole spectrum �=3.6.
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FIG. 13. The energy spectra of the total density distribution
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line� components separated at the threshold value of 88.2% in the
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